Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.285
1.
Sci Rep ; 14(1): 10544, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719860

The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.


Acetolactate Synthase , Acetyl-CoA Carboxylase , Echinochloa , Herbicide Resistance , Herbicides , Soil Microbiology , Italy/epidemiology , Herbicides/pharmacology , Acetolactate Synthase/antagonists & inhibitors , Acetolactate Synthase/genetics , Echinochloa/drug effects , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/antagonists & inhibitors , Plant Weeds/drug effects , Microbiota/drug effects , Biodiversity , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Soil/chemistry , Fungi/drug effects , Fungi/isolation & purification , Fungi/genetics
2.
Front Cell Infect Microbiol ; 14: 1379831, 2024.
Article En | MEDLINE | ID: mdl-38746785

Objective: Exploring the effect of SJQJD on the pulmonary microbiota of chronic obstructive pulmonary disease (COPD) rats through 16S ribosomal RNA (rRNA) sequencing. Methods: A COPD rat model was constructed through smoking and lipopolysaccharide (LPS) stimulation, and the efficacy of SJQJD was evaluated by hematoxylin and eosin (H&E) staining and Enzyme-Linked Immunosorbnent Assay (ELISA). The alveolar lavage fluid of rats was subjected to 16S rRNA sequencing. The diversity of lung microbiota composition and community structure was analyzed and differential microbiota were screened. Additionally, machine learning algorithms were used for screening biomarkers of each group of the microbiota. Results: SJQJD could improve lung structure and inflammatory response in COPD rats. 16s rRNA sequencing analysis showed that SJQJD could significantly improve the abundance and diversity of bacterial communities in COPD rats. Through differential analysis and machine learning methods, potential microbial biomarkers were identified as Mycoplasmataceae, Bacillaceae, and Lachnospiraceae. Conclusion: SJQJD could improve tissue morphology and local inflammatory response in COPD rats, and its effect may be related to improve pulmonary microbiota.


Disease Models, Animal , Drugs, Chinese Herbal , Lung , Microbiota , Pulmonary Disease, Chronic Obstructive , RNA, Ribosomal, 16S , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/drug therapy , Animals , Microbiota/drug effects , Lung/microbiology , Lung/pathology , Rats , RNA, Ribosomal, 16S/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bronchoalveolar Lavage Fluid/microbiology , Rats, Sprague-Dawley
3.
Curr Microbiol ; 81(6): 160, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695903

Salt stress can adversely affect plant seed germination, growth and development, and eventually lead to slow growth and even death of plants. The purpose of this study was to investigate the effects of different concentrations of NaCl and Na2SO4 stress on the physicochemical properties, enzyme activities, rhizosphere microbial community and seven active components (L-phenylalanine, Protocatechuic acid, Eleutheroside B, Chlorogenic acid, Caffeic acid, Eleutheroside E, Isofraxidin) of Acanthopanax senticosus rhizosphere soil. Statistical analysis was used to explore the correlation between the rhizosphere ecological factors of Acanthopanax senticosus and its active components. Compared with Acanthopanax senticosus under NaCl stress, Na2SO4 generally had a greater effect on Acanthopanax senticosus, which reduced the richness of fungi in rhizosphere soil and adversely affected the content of multiple active components. Pearson analysis showed that pH, organic matter, ammonium nitrogen, available phosphorus, available potassium, catalase and urease were significantly correlated with active components such as Caffeic acid and Isofraxidin. There were 11 known bacterial genera, 12 unknown bacterial genera, 9 known fungal genera and 1 unknown fungal genus significantly associated with the active ingredient. Salt stress had great changes in the physicochemical properties, enzyme activities and microorganisms of the rhizosphere soil of Acanthopanax senticosus. In conclusion, different types and concentrations of salts had different effects on Acanthopanax senticosus, and the active components of Acanthopanax senticosus were regulated by rhizosphere soil ecological factors.


Bacteria , Eleutherococcus , Fungi , Rhizosphere , Salt Stress , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/metabolism , Fungi/classification , Fungi/drug effects , Fungi/genetics , Fungi/isolation & purification , Eleutherococcus/metabolism , Microbiota/drug effects , Soil/chemistry , Sodium Chloride/metabolism , Plant Roots/microbiology
4.
J Agric Food Chem ; 72(19): 10781-10793, 2024 May 15.
Article En | MEDLINE | ID: mdl-38709780

In this study, 20-day-old soybean plants were watered with 100 mL of 100 mM NaCl solution and sprayed with silica nanoparticles (SiO2 NPs) or potassium silicate every 3 days over 15 days, with a final dosage of 12 mg of SiO2 per plant. We assessed the alterations in the plant's growth and physiological traits, and the responses of bacterial microbiome within the leaf endosphere, rhizosphere, and root endosphere. The result showed that the type of silicon did not significantly impact most of the plant parameters. However, the bacterial communities within the leaf and root endospheres had a stronger response to SiO2 NPs treatment, showing enrichment of 24 and 13 microbial taxa, respectively, compared with the silicate treatment, which led to the enrichment of 9 and 8 taxonomic taxa, respectively. The rhizosphere bacterial communities were less sensitive to SiO2 NPs, enriching only 2 microbial clades, compared to the 8 clades enriched by silicate treatment. Furthermore, SiO2 NPs treatment enriched beneficial genera, such as Pseudomonas, Bacillus, and Variovorax in the leaf and root endosphere, likely enhancing plant growth and salinity stress resistance. These findings highlight the potential of SiO2 NPs for foliar application in sustainable farming by enhancing plant-microbe interactions to improve salinity tolerance.


Bacteria , Glycine max , Nanoparticles , Rhizosphere , Silicon , Glycine max/microbiology , Glycine max/growth & development , Glycine max/drug effects , Glycine max/chemistry , Nanoparticles/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/growth & development , Silicon/pharmacology , Silicon/chemistry , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/drug effects , Soil Microbiology , Microbiota/drug effects , Plant Leaves/chemistry , Plant Leaves/microbiology , Plant Leaves/growth & development , Endophytes/physiology , Endophytes/drug effects , Silicon Dioxide/chemistry , Salt Stress
5.
Sci Rep ; 14(1): 10193, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702361

Amphibians are often recognized as bioindicators of healthy ecosystems. The persistence of amphibian populations in heavily contaminated environments provides an excellent opportunity to investigate rapid vertebrate adaptations to harmful contaminants. Using a combination of culture-based challenge assays and a skin permeability assay, we tested whether the skin-associated microbiota may confer adaptive tolerance to tropical amphibians in regions heavily contaminated with arsenic, thus supporting the adaptive microbiome principle and immune interactions of the amphibian mucus. At lower arsenic concentrations (1 and 5 mM As3+), we found a significantly higher number of bacterial isolates tolerant to arsenic from amphibians sampled at an arsenic contaminated region (TES) than from amphibians sampled at an arsenic free region (JN). Strikingly, none of the bacterial isolates from our arsenic free region tolerated high concentrations of arsenic. In our skin permeability experiment, where we tested whether a subset of arsenic-tolerant bacterial isolates could reduce skin permeability to arsenic, we found that isolates known to tolerate high concentrations of arsenic significantly reduced amphibian skin permeability to this metalloid. This pattern did not hold true for bacterial isolates with low arsenic tolerance. Our results describe a pattern of environmental selection of arsenic-tolerant skin bacteria capable of protecting amphibians from intoxication, which helps explain the persistence of amphibian populations in water bodies heavily contaminated with arsenic.


Amphibians , Arsenic , Microbiota , Skin , Animals , Arsenic/metabolism , Arsenic/toxicity , Microbiota/drug effects , Skin/microbiology , Skin/drug effects , Skin/metabolism , Amphibians/microbiology , Bacteria/drug effects , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Permeability/drug effects
6.
Sci Rep ; 14(1): 10231, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702407

Agricultural soils are increasingly undergoing inadvertent and purposeful exposures to engineered CeO2 nanoparticles (NPs), which can impact crops and root-associated microbial communities. However, interactions between NP concentration and exposure duration on plant-mediated responses of root-associated bacterial communities are not well understood. Soybeans seedlings were grown in soil with uncoated NPs added at concentrations of 0, 1 or 100 mg kg-1. Total soil exposure durations were either 190 days, starting 106 days before planting or 84 days with NP amendments coinciding with planting. We assessed plant development, bacterial diversity, differential abundance and inferred functional changes across rhizosphere, rhizoplane, and root tissue compartments. Plant non-monotonic dose responses were mirrored in bacterial communities. Most notably, effects were magnified in the rhizoplane under low-dose, short-exposures. Enriched metabolic pathways were primarily related to biosynthesis and degradation/utilization/assimilation, rather than responses to metals or oxidative stress. Our results indicate that plant-mediated bacterial responses were greater than direct NP impacts. Also, we identify needs for modeling non-monotonic legume stress responses that account for coinfection with mutualistic and parasitic bacteroids. Our findings provide new insights regarding effects of applications of soil amendments such as biosolids containing NPs or nano-enabled formulations used in cultivation of legumes and other crops.


Bacteria , Cerium , Glycine max , Nanoparticles , Plant Roots , Rhizosphere , Soil Microbiology , Glycine max/growth & development , Glycine max/drug effects , Glycine max/microbiology , Plant Roots/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Bacteria/drug effects , Microbiota/drug effects , Soil/chemistry
8.
BMC Plant Biol ; 24(1): 359, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698306

BACKGROUND: Selenium (Se) fertilizer and arbuscular mycorrhizal fungi (AMF) are known to modulate cadmium (Cd) toxicity in plants. However, the effects of their co-application on wheat growth and soil microbial communities in Cd-contaminated soil are unclear. RESULTS: A pot experiment inoculation with two types of AMF and the application of Se fertilizer under Cd stress in wheat showed that inoculation AMF alone or combined with Se fertilizer significantly increased wheat biomass. Se and AMF alone or in combination significantly reduced available Cd concentration in wheat and soil, especially in the Se combined with Ri treatment. High throughput sequencing of soil samples indicated that Se and AMF application had stronger influence on bacterial community compared to fungal community and the bacterial network seemed to have more complex interconnections than the fungal network, and finally shaped the formation of specific microflora to affect Cd availability. CONCLUSION: These results indicate that the application of Se and AMF, particularly in combination, could successfully decrease soil Cd availability and relieve the harm of Cd in wheat by modifying rhizosphere soil microbial communities.


Biomass , Cadmium , Fertilizers , Mycorrhizae , Rhizosphere , Selenium , Soil Microbiology , Triticum , Triticum/growth & development , Triticum/microbiology , Triticum/drug effects , Mycorrhizae/physiology , Cadmium/analysis , Cadmium/toxicity , Fertilizers/analysis , Selenium/metabolism , Soil Pollutants/analysis , Soil Pollutants/toxicity , Microbiota/drug effects
9.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732217

The Euganean Thermal District, situated in North-East Italy, is one of Europe's largest and oldest thermal centres. The topical application of its therapeutic thermal muds is recognised by the Italian Health System as a beneficial treatment for patients suffering from arthro-rheumatic diseases. Polysaccharides produced by the mud microbiota have been recently identified as anti-inflammatory bioactive molecules. In this paper we analysed the efficacy of Microbial-Polysaccharides (M-PS) derived from mature muds obtained at different maturation temperatures, both within and outside the codified traditional mud maturation range. M-PSs were extracted from six mature muds produced by five spas of the Euganean Thermal District and investigated for their chemical properties, monosaccharide composition and in vivo anti-inflammatory potential, using the zebrafish model organism. Additionally, mature muds were characterized for their microbiota composition using Next-Generation Sequencing. The results showed that all M-PSs exhibit similar anti-inflammatory potential, referable to their comparable chemical composition. This consistency was observed despite changes in cyanobacteria populations, suggesting a possible role of the entire microbial community in shaping the properties of these biomolecules. These findings highlight the importance of scientific research in untangling the origins of the therapeutic efficacy of Euganean Thermal muds in the treatment of chronic inflammatory conditions.


Anti-Inflammatory Agents , Zebrafish , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Italy , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/chemistry , Microbiota/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Mud Therapy
10.
Bioresour Technol ; 401: 130758, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692374

Triclosan (TCS) and tetracycline (TC) are commonly detected antibacterial agents in sewage and environment matrices. Nonetheless, the impact of sequential exposure to TCS and TC on the methanogenic digestion microbiome remains unknown. In this study, TCS was shown to reduce COD removal efficiency to 69.8%, but alleviated the inhibitive effect of consequent TC-amendment on the digestion microbiome. Interestingly, TCS pre-exposure resulted in abundance increase of acetotrophic Methanosaeta to 2.68%, being 2.91 folds higher than that without TCS amendment. Microbial network analyses showed that TCS pre-exposure caused microorganisms to establish a co-ecological relationship against TC disturbance. Further analyses of total antibiotic resistance genes (ARGs) showed the TCS-derived compromise of TC-induced ARGs enrichment in digestion microbiomes, e.g., 238.2% and 152.1% ARGs increase upon TC addition in digestion microbiomes without and with TCS pre-exposure, respectively. This study provides new insights into the impact of antibacterial agents on the methanogenic digestion microbiome.


Methane , Microbiota , Tetracycline , Triclosan , Triclosan/pharmacology , Microbiota/drug effects , Tetracycline/pharmacology , Methane/metabolism , Drug Resistance, Microbial/genetics , Sewage/microbiology , Anti-Bacterial Agents/pharmacology
11.
J Hazard Mater ; 471: 134333, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38643581

Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.


Bacteria , Microplastics , Soil Microbiology , Soil Pollutants , Soil , Zea mays , Soil Pollutants/toxicity , Soil/chemistry , Microplastics/toxicity , Zea mays/drug effects , Zea mays/growth & development , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism , Bacteria/classification , Sodium Chloride/toxicity , Polyesters , Salinity , Polyethylene , Microbiota/drug effects
12.
J Hazard Mater ; 471: 134397, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38677114

Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.


Charcoal , Composting , Glycine , Glyphosate , Herbicides , Neonicotinoids , Nitro Compounds , Soil Microbiology , Soil Pollutants , Strobilurins , Neonicotinoids/metabolism , Neonicotinoids/toxicity , Nitro Compounds/metabolism , Nitro Compounds/toxicity , Strobilurins/metabolism , Strobilurins/toxicity , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Charcoal/chemistry , Glycine/analogs & derivatives , Glycine/metabolism , Glycine/toxicity , Herbicides/metabolism , Herbicides/toxicity , Carbamates/metabolism , Carbamates/toxicity , Microbiota/drug effects , Fungicides, Industrial/toxicity , Fungicides, Industrial/metabolism , Pyrazoles/metabolism , Pyrazoles/toxicity , Insecticides/metabolism , Insecticides/toxicity , Biodegradation, Environmental , Soil/chemistry , Bacteria/metabolism , Bacteria/drug effects
13.
J Hazard Mater ; 471: 134353, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38678707

Aquatic microplastics (MPs) act as reservoirs for microbial communities, fostering the formation of a mobile resistome encompassing diverse antibiotic (ARGs) and biocide/metal resistance genes (BMRGs), and mobile genetic elements (MGEs). This collective genetic repertoire, referred to as the "plastiome," can potentially perpetuate environmental antimicrobial resistance (AMR). Our study examining two Japanese rivers near Tokyo revealed that waterborne MPs are primarily composed of polyethylene and polypropylene fibers and sheets of diverse origin. Clinically important genera like Exiguobacterium and Eubacterium were notably enriched on MPs. Metagenomic analysis uncovered a 3.46-fold higher enrichment of ARGs on MPs than those in water, with multidrug resistance genes (MDRGs) and BMRGs prevailing, particularly within MPs. Specific ARG and BMRG subtypes linked to resistance to vancomycin, beta-lactams, biocides, arsenic, and mercury showed selective enrichment on MPs. Network analysis revealed intense associations between host genera with ARGs, BMRGs, and MGEs on MPs, emphasizing their role in coselection. In contrast, river water exhibited weaker associations. This study underscores the complex interactions shaping the mobile plastiome in aquatic environments and emphasizes the global imperative for research to comprehend and effectively control AMR within the One Health framework.


Microplastics , Rivers , Rivers/microbiology , Rivers/chemistry , Microplastics/toxicity , Anti-Bacterial Agents/pharmacology , Water Pollutants, Chemical/toxicity , Bacteria/genetics , Bacteria/drug effects , Water Microbiology , Interspersed Repetitive Sequences , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Disinfectants/pharmacology , Microbiota/drug effects , Drug Resistance, Microbial/genetics
14.
Chemosphere ; 357: 142034, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615962

Sulfonamides, quinolones, tetracyclines, and macrolides are the most prevalent classes of antibiotics used in both medical treatment and agriculture. The misuse of antibiotics leads to their extensive dissemination in the environment. These antibiotics can modify the structure and functionality of microbial communities, consequently impacting microbial-mediated nitrogen cycling processes including nitrification, denitrification, and anammox. They can change the relative abundance of nirK/norB contributing to the emission of nitrous oxide, a potent greenhouse gas. This review provides a comprehensive examination of the presence of these four antibiotic classes across different environmental matrices and synthesizes current knowledge of their effects on the nitrogen cycle, including the underlying mechanisms. Such an overview is crucial for understanding the ecological impacts of antibiotics and for guiding future research directions. The presence of antibiotics in the environment varies widely, with significant differences in concentration and type across various settings. We conducted a comprehensive review of over 70 research articles that compare various aspects including processes, antibiotics, concentration ranges, microbial sources, experimental methods, and mechanisms of influence. Antibiotics can either inhibit, have no effect, or even stimulate nitrification, denitrification, and anammox, depending on the experimental conditions. The influence of antibiotics on the nitrogen cycle is characterized by dose-dependent responses, primarily inhibiting nitrification, denitrification, and anammox. This is achieved through alterations in microbial community composition and diversity, carbon source utilization, enzyme activities, electron transfer chain function, and the abundance of specific functional enzymes and antibiotic resistance genes. These alterations can lead to diminished removal of reactive nitrogen and heightened nitrous oxide emissions, potentially exacerbating the greenhouse effect and related environmental issues. Future research should consider diverse reaction mechanisms and expand the scope to investigate the combined effects of multiple antibiotics, as well as their interactions with heavy metals and other chemicals or organisms.


Anti-Bacterial Agents , Denitrification , Nitrification , Nitrogen Cycle , Nitrous Oxide , Anti-Bacterial Agents/pharmacology , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Nitrification/drug effects , Nitrogen/metabolism , Bacteria/metabolism , Bacteria/drug effects , Microbiota/drug effects
15.
Sci Total Environ ; 927: 172261, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38583611

The objective of this study was to comprehensively characterise the resistome, the collective set of antimicrobial resistance genes in a given environment, of two rivers, from their source to discharge into the sea, as these flow through areas of different land use. Our findings reveal significant differences in the riverine resistome composition in areas of different land uses, with increased abundance and diversity of AMR in downstream agricultural and urban locations, with the resistome in urban areas more similar to the resistome in wastewater. The changes in resistome were accompanied by changes in microbial communities, with a reduction in microbial diversity in downstream agricultural and urban affected areas, driven mostly by increased relative abundance in the phyla, Bacteroidetes and Proteobacteria. These results provide insight into how pollution associated with agricultural and urban activities affects microbial communities and influences AMR in aquatic water bodies. These results add valuable insights to form effective strategies for mitigating and preserving aquatic ecosystems. Overall, our study highlights the critical role of the environment in the development and dissemination of AMR and underscores the importance of adopting a One Health approach to address this global public health threat.


Agriculture , Rivers , Rivers/microbiology , Agriculture/methods , Environmental Monitoring , Microbiota/drug effects , Water Microbiology , Drug Resistance, Bacterial/genetics , Wastewater/microbiology , Bacteria/genetics , Bacteria/drug effects
16.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674022

The potato dry rot disease caused by Fusarium spp. seriously reduces potato yield and threatens human health. However, potential biocontrol agents cannot guarantee the stability and activity of biocontrol. Here, 18 synthetic microbial communities of different scales were constructed, and the synthetic microbial communities with the best biocontrol effect on potato dry rot disease were screened through in vitro and in vivo experiments. The results show that the synthetic community composed of Paenibacillus amylolyticus, Pseudomonas putida, Acinetobacter calcoaceticus, Serratia proteamaculans, Actinomycetia bacterium and Bacillus subtilis has the best biocontrol activity. Metabolomics results show that Serratia protoamaculans interacts with other member strains to produce caproic acid and reduce the disease index to 38.01%. Furthermore, the mycelial growth inhibition after treatment with caproic acid was 77.54%, and flow cytometry analysis showed that the living conidia rate after treatment with caproic acid was 11.2%. This study provides potential value for the application of synthetic microbial communities in potatoes, as well as the interaction mechanisms between member strains of synthetic microbial communities.


Caproates , Plant Diseases , Solanum tuberosum , Solanum tuberosum/microbiology , Solanum tuberosum/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Caproates/pharmacology , Caproates/metabolism , Fusarium/drug effects , Microbiota/drug effects
17.
Mar Pollut Bull ; 202: 116275, 2024 May.
Article En | MEDLINE | ID: mdl-38564821

Mesopelagic water from the deep Eastern Mediterranean Sea (EMS) was collected under disrupted (REPRESS) or undisturbed (HP) pressure conditions and was acclimated to oil (OIL) or dispersed-oil (DISPOIL) under in situ pressure and temperature (10 MPa, 14 °C). Decompression resulted in oil-acclimatised microbial communities of lower diversity despite the restoration of in situ pressure conditions during the 1-week incubation. Further biodiversity loss was observed when oil-acclimatised communities were transferred to ONR7 medium to facilitate the isolation of oil-degrading bacteria. Microbial diversity loss impacted the degradation of recalcitrant oil compounds, especially PAHs, as low-abundance taxa, linked with PAH degradation, were outcompeted in the enrichment process. Thalassomonas, Pseudoalteromonas, Halomonas and Alcanivorax were enriched in ONR7 under all experimental conditions. No effect of dispersant application on the microbial community structure was identified. A. venustensis was isolated under all tested conditions suggesting a potential key role of this species in hydrocarbons removal in the deep EMS.


Biodiversity , Microbiota , Petroleum , Mediterranean Sea , Microbiota/drug effects , Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons/analysis , Bacteria , Culture Media , Water Pollutants, Chemical , Seawater/microbiology , Seawater/chemistry , Pressure
18.
Ecotoxicol Environ Saf ; 277: 116338, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38640799

Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 µg/L) for 21 days significantly enhanced the toxicity of DBP (100 µg/L) and BBP (100 µg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.


Copper , Daphnia , Dibutyl Phthalate , Phthalic Acids , Water Pollutants, Chemical , Animals , Daphnia/drug effects , Phthalic Acids/toxicity , Water Pollutants, Chemical/toxicity , Copper/toxicity , Dibutyl Phthalate/toxicity , Metal Nanoparticles/toxicity , Esters/toxicity , Microbiota/drug effects , Glutathione Transferase/metabolism , Metabolomics , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Metabolome/drug effects , Daphnia magna
19.
Sci Total Environ ; 929: 172632, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38653412

The effectiveness of almond shell-derived biochar (ASB) in immobilizing soil heavy metals (HMs) and its impact on soil microbial activity and diversity have not been sufficiently studied. Hence, a pot study was carried out to investigate the effectiveness of ASB addition at 2, 4, and 6 % (w/w) on soil biochemical characteristics and the bioavailability of Cd, Cu, Pb, and Zn to tomato (Solanum lycopersicum L.) plants, as compared to the control (contaminated soil without ASB addition). The addition of ASB promoted plant growth (up to two-fold) and restored the damage to the ultrastructure of chloroplast organelles. In addition, ASB mitigated the adverse effects of HMs toxicity by decreasing oxidative damage, regulating the antioxidant system, improving soil physicochemical properties, and enhancing enzymatic activities. At the phylum level, ASB addition enhanced the relative abundance of Actinobacteriota, Acidobacteriota, and Firmicutes while decreasing the relative abundance of Proteobacteria and Bacteroidota. Furthermore, ASB application increased the relative abundance of several fungal taxa (Ascomycota and Mortierellomycota) while reducing the relative abundance of Basidiomycota in the soil. The ASB-induced improvement in soil properties, microbial community, and diversity led to a significant decrease in the DTPA-extractable HMs down to 41.0 %, 51.0 %, 52.0 %, and 35.0 % for Cd, Cu, Pb, and Zn, respectively, as compared to the control. The highest doses of ASB (ASB6) significantly reduced the metals content by 26.0 % for Cd, 78.0 % for Cu, 38.0 % for Pb, and 20.0 % for Zn in the roots, and 72.0 % for Cd, 67.0 % for Cu, 46.0 % for Pb, and 35.0 % for Zn in the shoots, as compared to the control. The structural equation model predicts that soil pH and organic matter are driving factors in reducing the availability and uptake of HMs. ASB could be used as a sustainable trial for remediation of HMs polluted soils and reducing metal content in edible plants.


Antioxidants , Charcoal , Metals, Heavy , Microbiota , Prunus dulcis , Soil Microbiology , Soil Pollutants , Solanum lycopersicum , Charcoal/chemistry , Soil Pollutants/metabolism , Antioxidants/metabolism , Microbiota/drug effects , Biological Availability , Soil/chemistry
20.
J Hazard Mater ; 470: 134283, 2024 May 15.
Article En | MEDLINE | ID: mdl-38613956

The coexistence of microplastics (MPs) and heavy metals in sediments has caused a potential threat to sediment biota. However, differences in the effects of MPs and heavy metals on microbes and plants in sediments under different sediment conditions remain unclear. Hence, we investigated the influence of polyethylene (PE) and polylactic acid (PLA) MPs on microbial community structure, Pb bioavailability, and wheatgrass traits under sequential incubation of sediments (i.e., flood, drainage, and planting stages). Results showed that the sediment enzyme activities presented a dose-dependent effect of MPs. Besides, 10 % PLA MPs significantly increased the F1 fractions in three stages by 11.13 %, 30.10 %, and 17.26 %, respectively, thus resulting in higher Pb mobility and biotoxicity. MPs altered sediment bacterial composition and structures, and bacterial community differences were evident in different incubation stages. Moreover, the co-exposure of PLA MPs and Pb significantly decreased the shoot length and total biomass of wheatgrass and correspondingly activated the antioxidant enzyme activity. Further correlation analysis demonstrated that community structure induced by MPs was mainly driven by sediment enzyme activity. This study contributes to elucidating the combined effects of MPs and heavy metals on sediment ecosystems under different sediment conditions.


Geologic Sediments , Lead , Microplastics , Water Pollutants, Chemical , Geologic Sediments/microbiology , Lead/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Microbiota/drug effects , Polyesters , Polyethylene/toxicity , Floods , Bacteria/drug effects
...